Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion
نویسندگان
چکیده
In this Article, we present a molecular-level understanding of the experimentally observed loss of crystallinity in UiO-66-type metal-organic frameworks, including the pristine UiO-66 to -68 as well as defect-containing UiO-66 materials, under the influence of external pressure. This goal is achieved by constructing pressure-versus-volume profiles at finite temperatures using a thermodynamic approach relying on ab initio derived force fields. On the atomic level, the phenomenon is reflected in a sudden drop in the number of symmetry operators for the crystallographic unit cell because of the disordered displacement of the organic linkers with respect to the inorganic bricks. For the defect-containing samples, a reduced mechanical stability is observed, however, critically depending on the distribution of these defects throughout the material, hence demonstrating the importance of judiciously characterizing defects in these materials.
منابع مشابه
Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering
UiO-66 is a promising metal-organic framework for photocatalytic applications. However, the ligand-to-metal charge transfer of an excited electron is inefficient in the pristine material. Herein, we assess the influence of missing linker defects on the electronic structure of UiO-66 and discuss their ability to improve ligand-to-metal charge transfer. Using a new defect classification system, w...
متن کاملUniform distribution of post-synthetic linker exchange in metal–organic frameworks revealed by Rutherford backscattering spectrometry†
Rutherford backscattering spectrometry (RBS) has been used for the first time to study post-synthetic linker exchange (PSE) in metal-organic frameworks. RBS is a non-invasive method to quantify the amount of introduced linker, as well as providing a means for depth profiling in order to identify the preferred localization of the introduced linker. The exchange of benzenedicarboxylate (bdc) by s...
متن کاملExploration of the mechanical behavior of metal organic frameworks UiO-66(Zr) and MIL-125(Ti) and their NH2 functionalized versions.
The structural behaviour under mechanical stimuli of two metal organic frameworks, UiO-66(Zr) and MIL-125(Ti) and their amino-functionalized derivatives has been investigated by high-pressure powder X-ray diffraction up to 3.5 GPa. All these solids showed a gradual pressure-induced reversible decrease of their crystallinity and UiO-66(Zr)_NH2 material has been revealed as one of the most resili...
متن کاملDefinitive molecular level characterization of defects in UiO-66 crystals.
The identification and characterization of defects, on the molecular level, in metal-organic frameworks (MOFs) remain a challenge. With the extensive use of single-crystal X-ray diffraction (SXRD), the missing linker defects in the zirconium-based MOF UiO-66, Zr6 O4 (OH)4 (C8 H4 O4 )6 , have been identified as water molecules coordinated directly to the zirconium centers. Charge balancing is ac...
متن کاملA Computational and Experimental Approach Linking Disorder, High‐Pressure Behavior, and Mechanical Properties in UiO Frameworks
Whilst many metal-organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4 (bpdc)6], bpdc: 4,4'-biphenyl dicarboxylate) and UiO-abdc ([Zr6O4(OH)4 (abdc)6], abdc: 4,4'-azo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2016